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1 Foundations
On a set X and for a non-negative integer n, the n-ary operation on X is a
function Xn −→ X. Note that zero-ary operation exists only for those non-
empty X. 2-ary operation is also called a binary operation. A non-empty
set with operations are called an algebraic structure. Consider a binary
operation ◦. ◦(a, b) is usually written as a ◦ b or even simply ab for brevity.
Binary operation · on X is said to be associative if (a ◦ b) ◦ c = a ◦ (b ◦ c) for
every a, b, c ∈ X. An algebraic structure with an associative binary operation
is called a semigroup.

For a binary operation · on X, an element e ∈ X such that ∀x ∈ X(e · x =
x · e = x) is called the identity of ·.

Theorem 1. If there is an identity of an operation on a set, then the identity
is unique.

Proof. Let e and f be identities. Then

e = ef = f

A semigroup is called a monoid if there is an identity. A group is a monoid
in which every elements are invertible. If the operation is commutative, the
group is said to be abelian or additive.
Example 1.1. The followings are some algebraic structures.

(1) (N,+) is a semigroup but not monoid. However, the structure can be ex-
tended to a group.

(2) (N,×) is a monoid but not a group Moreover, it cannot be extended to a
group.

(3) (N0,×) is a monoid but not a group
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(4) For any set, the set of all functions from X to X forms a monoid.

(5) For any set, the set of all bijections from X to X forms a group.

(6) Z, Q, R are additive groups with addition.

(7) For any set S and a group G, the set of all functions S −→ G form a group
with pointwise operation; f : S −→ G and g : S −→ G then (f · g) : x 7→
f(x) · g(x).

(8) Mn(R) is the set of n × n array of real numbers. The elements in Mn(R)
are called the n×n square real matrices. For M ∈ Mn(R) and 1 ≤ i, j ≤ n,
Mij denotes the i row, jth column entry of M . Therefore, matrices can be
viewed as a real valued function on {1, 2, . . . , n}2. Hence Mn(R) forms a
group.

(9) R[x], the set of all polynomial with real coefficients is an additive group with
addition. However, it is just a monoid but not a group with multiplication.

1. Let G be a group and g, h ∈ G. Prove the followings.

(1) g−1−1
= g.

(2) (gh)−1 = h−1g−1.
(3) gh = h =⇒ g = e and gh = g =⇒ h = e where e is the identity.

A function between groups which commutes with the operation is called a
(group) homomorphism.

Precisely, let (G, ·) and (H, ∗) be groups. A function f : G −→ H is a group
homomorphism is the following diagram commutes.

G×G G

H ×H H

·

f×f f

∗

which means f ◦ · = ∗ ◦ (f × f) where f × f : G × G −→ H ×H, (a, b) 7→
(f(a), f(b)).

2. Prove that group homomorphisms preserves identities and inverses. That
is, for any group homomorphism f : G −→ H, where G and H are groups
with identities e and e′, respectively,

f(e) = e′, f
(
a−1

)
= f(a)−1

For a homomorphism f : G −→ H, if for every homomorphisms g, h : H −→
K, g ◦ f = h ◦ f =⇒ g = h, f is called an epimorphism. If for every
g, h : K −→ G, if f ◦ g = f ◦ h =⇒ g = h, we call h a monomorphism.

An invertible homomorphism is called an isomorphism. By inverse, we
mean inverse homomorphism. Two groups are said to be isomorphic if there
exists an isomorphism.
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3. Let f : G −→ H be a group homomorphism. Prove that a group homo-
morphism is an isomorphism if and only if it is a bijection as a function.

A relation R between two sets A and B is nothing but a subset of A×B.

R ⊆ A×B = {(a, b)|a ∈ A, b ∈ B}

When (a, b) ∈ R, we say that a and b are related under R and we write aRb. A
relation ∼ between two identical sets A are called a relation on A.

Let ∼ be a relation on A. ∼ is said to be reflective if for each a ∈ A, a ∼ a.
It is said to be symmetric if for each a and b ∈ A, a ∼ b =⇒ b ∼ a. It is said
to be transitive if for each a, b, and c ∈ A, a ∼ b ∧ b ∼ c =⇒ a ∼ c.

A reflective, symmetric, transitive relation is called an equivalence rela-
tion.

For a set X, a subset of the powerset of X whose members are non-empty,
pairwise disjoint with union equal to X is called a partition.

Let X be a set and ∼ be an equivalence relation for an element x ∈ X, the
set

[x]∼ := {x′ ∈ X|x′ ∼ x}

is called the equivalence class of x (under ∼). Then the set

X/ ∼ −{[x]∼ |x ∈ X}

forms partition.
Conversely, for a partition P of X, the relation ∼P be

x ∼P y :≡ ∃C ∈ P s.t. {x, y} ⊆ C

Then it becomes an equivalence relation.

4. Let X be a set and E be the set of all equivalence relations and P be the
set of all partitions. Prove that the map

X/• : E −→ P, ∼7→ X/ ∼

is a bijection.

For a group G, a subset with the induced operation which forms a group is
called a subgroup. If H is a subgroup of G, then we write H < G.

Let f : G −→ H be a group homomorphism. The inverse image of the
identity of H is called the kernel of f .

5. Let G be a group.

(1) Prove that if H ⊆ G is nonempty and for every g, h ∈ H, gh−1 ∈ H,
then H is a subgroup.
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(2) Prove that a kernel of a homomorphism G −→ H is a subgroup of
G.

For a group G and a subgroup H and element g of G, the set

gH = {gh|h ∈ H}

is called a left coset or simply a coset. Similarly, Hg = {hg|h ∈ H} is called
a right coset.

G/H = {gH|h ∈ G}

is called the quotient of G by H and |G/H| is called the index of the subgroup
H and written [G : H].

Two sets A and B are said to be equinumerous if there is a bijection
between them.

6. Let G be a group and H be a subgroup.

(1) Prove that all cosets are equinumerous.
(2) G/H is a partition of G
(3) (Lagrange’s theorem) Prove that the index of H is a divisor of the

order of G provided that |G| < ∞.

Let S be a subset of G. The smallest subgroup of G which contains S is
called the group generated by S.

For additive group, for positive integers m and n, we define (m − n)g =

mg − ng. For multiplicative group, we define gm−n = gm (gn)
−1.

If a group is generated by an element, then it is said to be cyclic. The order
of ⟨g⟩ is also called the order of g which is written as ord(g).

7. Let G be a group with identity 1.

(1) Prove that the group generated by g is

⟨g⟩ = {gn|n ∈ Z}

(2) Let the order of g is finite. Prove that gord(g) = 1.
(3) gn = 1 ↔ ord(g)|n.
(4) (Euler) If G is finite, then g|G| = 1.

Let G be a group and g ∈ G is an element and A, B are sets.
We define gA = {ga|a ∈ A}, AB = {ab|a ∈ A ∧ b ∈ B}. Note that products

between sets and elements also has associative property. This intuitively clear
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fact will not proved rigorously although the proof is somewhat involved.1 The
following example should be suffices to illustrate the situation

((xy)H)z = x(y(Hz)) = {xyhz|h ∈ H}

A subgroup N of G is said to be normal if for every elements x ∈ G,
xN = Nx.

8. Let H be a subgroup of G. Prove that the followings are all equivalent.

a. H is a normal subgroup of G.
b. ∀x ∈ G, xHx−1 = H

c. ∀x ∈ G, (xH)(yH) = (xyH).
d. H is a kernel of a homomorphism f : G −→ T for some group T .

Theorem 2. Let G and H be groups with homomorphism ϕ : G −→ H. Then
ϕ(G) ≃ G/ kerϕ is canonical. g |ϕ⟩ 7→ ϕ(g).

Hence for epimorshism ϕ : G −→ Ranϕ, we have the following commuting
diagram.

G Ranϕ

G/ kerϕ

ϕ

π
ϕ̃

Let R be an abelian group with +. Suppose that there is another operation ·
on R which forms a semi-group and distributes over addition. Then the structure
is called a ring.

If the multiplication is commutative, we say R is commutative. If the mul-
tiplicative structure is monoid, then we say R is unital.

9. Let R be a ring.

(1) Prove that 0x = x · 0 = 0.
(2) Prove that x(−y) = (−x)y = −(xy).

10. Let R be a ring such that x2 = x for every element of x ∈ R. Prove that
R is commutative.

Example 1.2. Some examples of rings
1Actually, the term ‘associative’ is not properly defined where the intention is clear from

the context.
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(1) Z with usual operations.

(2) Mn(R), a unital ring.

(3) R[x], a unital commutative ring.

For a ring R, if for every r ∈ R, rI ⊂ I is called a left ideal where I is
nonempty. Right ideal is defined similarly. A left and right ideal is simple
called an ideal.

In a ring R and ideal I, R/I = {x+ I|x ∈ R} is the quotient ring of R by I.
In a ring R and a set S, the ideal generated by S is the smallest ideal which

contains S.

11. For a ring R and an ideal I, prove that R/I is a ring with induced
operations.

If a ring R, if lr = 0 but l ̸= 0 and r ̸= 0, then l and r are called a left and
right zerodivisor, respectively.

In a commutative ring, m = qd, d ̸= 0 then m is called a multiple of d and
d is said to be a divisor of m and q is called the quotient when m is divided by
q. In this case d|m.

12. Find all zero divisors of M2(C).

2 Unital commutative rings
In this section, we will basically discuss on a unital commutative ring. A divisor
of the unity is said to be (multiplicatively) invertible. An element u is called
a unit if it is multiplicatively invertible. The set of all units in a unital com-
mutative ring R forms a group R∗ which is called the multiplicative group
of R. For any a and b, there is a unit u such that b = ua, then b is said to be
associated with a.

The only element associated with 0 is zero itself. For any nonzero element
a, b is associated with a iff a|b ∧ b|a.

13. Prove that in a unital commutative ring, the associativity between ele-
ments is an equivalence relation.

A divisor d of a which is not associated with a nor a unit is called a proper
divisor.

An element r which is nonzero, non unit is said to be irreducible if it has no
proper divisors.

A nonzero, nonunit element p is said to be prime if

p|ab =⇒ p|a ∨ p|b

14. In a commutative ring R, prove the followings
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(1) x ̸= 0 ⇐⇒ x|0
(2) 1|x provided |R| ̸= 1 ∧ 1 ∈ R.
(3) a|b ∧ b|c =⇒ a|c.

A unital commutative ring with no zero divisor is called an integral do-
main.

Theorem 3. In an integral domain, every prime element is irreducible.

An integral domain with the following property is called a unique factor-
ization domain

Every nonzero element can be written as a finite product of irre-
ducible elements and it is unique up to associativity and ordering.

A ring S ⊆ R is called a subring if it is a ring operation induced from R.
When R is unital, we say S is sub unital ring if it is subring and 1R ∈ S. Note
that a subring which is unital by itself may not be a sub unital ring.

15. Find a subring of Z/10Z which is unital but does not have 1.

For a unital commutative ring K and its sub unital ring R and α ∈ K,

R [α] =


n∑

j=0

rjα
j |n = 0, 1, 2, . . . , rj ∈ R


16. Let R = Z[

√
−5].

(1) Find all units.
(2) Prove that 6 can be factored into two essentially different way.

3 UFD
Theorem 4. In a UFD, every irreducible element is a prime element.

Proof. Let r be an irreducible element.
By definition, r is non-zero, non-unit. Suppose that r|ab. We need to prove

either r|a or r|b to complete the proof. Let q be such that ab = qr. If ab were
zero, there would be nothing to prove. So suppose that ab ̸= 0. Then a and b are
factored into a finite products of irreducible elements possibly including empty
product which produces 1. qr also can be written as a products of irreducibles
which should contain r. Since we are working in UFD, among irreducibles whose
product is ab should contain r up to associativity which should come from either
factorization of a or b. Hence we should have either r|a or r|b.
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17. In an integral domain, prove that if every nonzero element is expressed
in a product of irreducible elements and every irreducible elements are
prime elements, the domain is actually UFD.

In a commutative ring R, if there exists φ : R \ {0} −→ N0 such that

(1) If ab ̸= 0, then φ(a) ≤ φ(ab).

(2) For each a, b ̸= 0, there exists q, r such that a = qb + r and r = 0 ∨
(r ̸= 0 ∧ φ(r) < φ(b)).

then R is called an Euclidean ring. An integral domain which is Euclidean, is
called a Euclidean domain.

A commutative ring with unity in which every nonzero elements are units is
called a field.

18. Prove that Z/mZ is a field if and only if m is prime.

In a field, the smallest natural number p such that p = 0 is called a charac-
teristic of the field. Otherwise we say the characteristic of the field is zero.

19. Prove that the characteristic of a field is prime number.

A field homomorphism is a unital ring homomorphism which means that the
map commutes with operations and maps unity to unity.

20. Let F and K be a field.

(1) Prove that if there is a field homomorphism F −→ K, then the
characteristic of F and K coincide.

(2) There is a unique field homomorphism Z/pZ −→ F if F has charac-
teristic p.

(3) There is a unique field homomorphism Q −→ F if F has characteristic
zero.

Example 3.1. The followings are examples of Euclidean domains.

1. Z. A Euclidean function takes absolute values.

2. F [x] where F is a field and x is an indeterminate. A Euclidean function
takes the degree as the value.

In a UFD, the greatest common divisor makes sense. Let a and b be elements
in a UFD where not both equals to zero. g is called the greatest common divisor
of a and b if is it a common divisor and any other common divisors are divisors
of g. We can prove the existence of g using prime factorization of the ring. We
can specify greatest common divisor up to multiple of units which supports the
usage of the definite article.

Two elements a and b are said to be coprime if they are not both equal to
zero and the only common divisors are the units.

8



Theorem 5 (Bézout’s theorem). In a Euclidean domain, for every a, b there
exists a solution for the equation

ax+ by = g

where g is the GCD of a and b. Especially, if a and b are coprime, then the
unity can be expressed as a linear combination of a and b.

Proof. Apply Euclidean algorithm.
Without loss of any generality, we may assume that b ̸= 0. Let q1, r1 be

such that a = q1b + r1 where φr1 < φb. If r1 = 0, then we stop and let k = 0.
b is the GCD of a and b. If r1 ̸= 0 let b = q2r1 + r2 where φr2 < φr1. If r2 = 0,
then we stop and let k = 1. Like this manner, for each positive integer n, if
rn ̸= 0, let rn−1 = qn+1rn + rn+1 and if rn+1 = 0 then stop the process and set
k = n.

Setting r0 = b, we have rk as GCD of A and B and rk can be expressed as
a linear combination of a and b i.e. for some x, y,

rk = ax+ by

Proposition 3.1. In a Euclidean domain with Euclidean function f , let ε =
f(1).

1. f(u) = ε is equivalent to u is a unit.

2. For each nonzero a and a proper divisor d, f(d) < f(a).

Proof. Since n = 1n, f(1) ≤ f(n). Therefore ε is minimum of f .
If f(n) = ε , then n is a unit. To see this suppose that n cannot divide 1,

then there should exists r such that f(r) < f(n). Conversely, if n is a unit, then
f(u) should equals to ε since 1 = uu−1 implies f(u) ≤ f(1).

Now let d be a proper divisor of a ̸= 0. a = qd and q is also a properdivisor
of a. Now divide d by a. d = ka+ r. Since d is a proper divisor, we have r ̸= 0.
Hence f(r) < f(a). And r = d− ka = d− kqd = d(1− kq) and q is not a unit,
1− kq ̸= 0 hence f(d) ≤ f(r) < f(a).

Theorem 6. A Euclidean domain is a ufd.

Proof. Let R be a Euclidean domain with a Euclidean function φ. It suffices to
show that every element can be factored into irreducibles and each irreducible
element is prime.

Suppose that there are some non-zero elements which cannot be factored
into irreducibles. Pick k which is so with minimal Euclidean function value.
Note that k is non-unit, non-zero, reducible. Let d be its proper divisor and
k = qd. Then by the minimality of k, and by proposition 3.1, q and d can be
written as a product of irreducibles which is an absurdity. Hence every nonzero
elements can be factored into irreducibles.
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Now let r be an irreducible and r|ab but r ∤ a. Since r is irreducible, r and a
are coprime. Let u, v be ur+va = 1. Then b = bur+abv so r|b. This completes
the proof.

As for the case of groups, there goes an isomorphism theorem for rings.
Let R and S be rings and f : R −→ S be a ring homomorphism. Then the

kernel of f is an ideal of R and,

R/ ker f ≃ f(R)

where the canonical isomorphism is given by r + ker f 7→ f(r).
Consider a unital commutative ring S. We may treat polynomials over S

formally. However, in this article, we shall adapt usual informal definition. A
polynomial f(x) over a sub unital ring R of S is called a minimal polynomial
of an element α ∈ S if evaluation of f(x) at x = α vanishes and the degree of
f(x) is minimal among nonzero polynomials with this property. A polynomial
is said to be monic if it is nonzero and the leading coefficient is a unit. On the
other hand, for an element α ∈ S, we define R[α] to be the smallest sub unital
ring of S which contains R ∪ {α}. Equivalently, R[α] is the set of all values of
evaluation of polynomials R[x] at x = α.

In a unital commutative ring R, an ideal generated by an element f ∈ R is
⟨f⟩ = Rf .

Theorem 7. For a commutative ring with unity S and a unital subring R and
an element α ∈ S, if the minimal polynomial of α is monic then

R[α] ≃ R[x]/ ⟨f(x)⟩

Proof. Let φ : R[x] −→ S be the evaluation homoorphism such that x 7→ α.
Then R[α] is the range of φ. By isomorphism theorem, it suffices to show that
kerφ = ⟨f(x)⟩.

Clearly ⟨f(x)⟩ ⊆ kerφ. To see kerφ ⊆ ⟨f(x)⟩, let g(x) ∈ kerφ. Since f(x)
is monic, we can find q(x) and r(x) such that

g(x) = q(x)f(x) + r(x), deg r(x) < deg f(x)

To do this, one just need to perform the usual polynomial long division because
f(x) is monic. Then the minimality of degree of f(x) asserts that r(x) = 0.
Hence g(x) ∈ ⟨f(x)⟩.

Wherefore we do not distinguish these two structures.

4 Gaussian integers
Contents of this section is mainly obtained from [Art91].

A number x+ yi is called a Gaussian integer if x, y ∈ Z.

21. Prove that the ring of Gaussian integers is Euclidean.
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22. Prove the followings.

(1) A nonzero integer d is a divisor of an integer n in Z if and only if it
is so in Z[i].

(2) A nonzero integer d is a divisor of m+ ni if and only if d|m and d|n.

Theorem 8. The following all holds.

(i) p is a positive prime in Z. Either p is a prime in Z[i] or a norm of a
prime in Z[i].

(ii) π is a prime in Z[i]. The norm of π is either a integer prime or a square
of integer prime.

(iii) An integer prime is Gaussian prime if and only if it is 3 modulo 4.

(iv) For an integer prime p, the followings are all equivalent.

(a) p is a norm of a Gaussian prime.
(b) p is a sum of two squares.
(c) −1 is a quadratic residue modulo p

(d) p ≡ 1, 2 modulo 4.

Theorem 9. The equation x2 + y2 = n has an integer solution if and only
if every prime p which is congruent 3 modulo 4 has an even exponent in the
factorization of n.

23. Find all primitive Pythagorean triples.

Theorem 10. Every finite subgroup of a multiplicative group of a field is cyclic.

Proof. Let F be a field and G be a finite subgroup of F ∗. Then every element
of G is of finite order which is a divisor of n = |G|.

For each d|n, let Gd be the set of element of order d. Suppose that Gd ̸=
∅. Let α ∈ Gd. Then ⟨α⟩ ⊆

∣∣{x ∈ G|xd = 1
}∣∣. Since F is a field, we have∣∣{x ∈ G|xd = 1

}∣∣ ≤ d. Noting that |⟨α⟩| = d, we have ⟨α⟩ =
{
x ∈ G|xd = 1

}
.

It follows that |Gd| = φ(d).
Therefore for each d|n, we have either |Gd| = 0, or |Gd| = φ(d). Now

n = |G| =
∑
d|n

|Gd| ≤
∑
d|n

φ(d) = n

and the equality condition gives that |Gd| = φ(d) for each d|n. Especially,
|Gn| = φ(n) so there are exactly φ(n) generators of G.
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24. Prove that for every prime p such that p ≡ −1(mod7), there exists a
natural number n such that n3 + n2 − 2n − 1 is a multiple of p. (Korea
Winter School 2014)

5 Algebraic Integers
Contents of this section is mainly obtained from [AD08].

A complex number is said to be algebraic if it is a root of a polynomial in
Q[x]. An algebraic number is called an algebraic integer if its minimal monic
polynomial is actually i Z[x].

Let d be a square free integer including all negative integers. (So, −4 is
excluded.) The field F = Q[

√
d] is called a quadratic number field.

25. Answer.

(1) Determine all algebraic integers which are rational numbers.
(2) Prove that Gaussian integers are algebraic integers.
(3) Prove that in the quadratic number field F = Q[

√
d], δ =

√
d, α =

a+bδ is an algebraic integer if and only if 2a and a2−b2d are integers.

Theorem 11. Algebraic integers forms a ring.

26. Consider the sequence (xn)n≥0 defined by x0 = 4, x1 = x2 = 0, x3 = 3
and xn+4 = xn+1 + xn. Prove that for any prime p, the number xp is a
multiple of p. (AMM 1998)

27. Determine whether√
10012 + 1 +

√
10022 + 1 + · · ·+

√
20002 + 1

be a rational number or not? (China TST 2005)
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6 Vector spaces
Let F be a field. Consider an additive group V and End(V ) be the ring of
endomorphisms on V . With a unital ring homomorphism φ : F −→ End(V ), V
is called a vector space over F .

A basis of V over F is a maximal linearly independent set B ⊆ V .
Let me accept the following theorem.

Theorem 12. The followings holds.

1. For every finitely generated vector space V , there is a basis.

2. For every finitely generated vector space V , there is a definite number of
elements for every basis, called the dimension.

3. If AC holds, then every vector space has a basis.

28. Prove that there exists a non-linear Cauchy function. That is to say,
prove that there exists f : R −→ R such that for every x, y ∈ R, f(x+y) =
f(x) + f(y) but there is r ∈ R such that f(r) ̸= f(1)r.

An incidence geometry G = (P,L) is a pair of sets called the set of all
points and lines equipped with a relation I between P and L such that

i. For every distinct pair of points {P,Q} there exists exactly one line ℓ ∈ L
which passes through each member of the pair.

ii. For every line l, there exists at least two distinct points on it.

iii. There exists at least three points which does not lie on a line.

Let F be a field and V be a two dimensional vector space. Prove that
ordinary one dimensional affine spaces form a model of incidence geometry with
additional parallel postulate.

For every line l and a point P not on l, there exists unique line
passing through P and pallel to l.

A projective geometry G = (P,L) is a pair of sets called the set of all
points and lines equipped with a relation I between P and L such that

i. For every distinct pair of points there exists exactly one line which passes
through each of the members of the pair.

ii. For every distinct pair of lines there exists exactly one point which laid on
both of them.

iii. There are four points such that no line passes through more than two of
them.
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A projective geometry is a fortiori an incidence geometry.
Let G be an incident geometry with parallel postulate. Let P∞ be the set

of equivalence class of the parallel lines. Extent L to L′ by pairing l with its
equivalence class, (l, [l]). These lines in L′ are called augmented lines. Two
augmented lines posses each ordinary points on it and the equivalence class.
Now, attach one more line l∞ which passes only those P∞. Then the geometry
with points P ∪ P∞ and L′ ∪ l∞ forms a projective geometry. This process is
called the projective completion.

29. There are 21 towns. Each airline runs direct flights between every pair of
towns in a group of five. What is the minimum number of airlines needed
to ensure that at least one airline runs direct flights between every pair of
towns? (Russia 1988 grade 8)

Exercises
30. Find all integral solutions of the equation x2 + 1 = y3. [Ros14, 603p]

31. Find all integral solutions of x2 + y2 = z3. [Ros14, 604p]

32. Let α and π relatively prime Gaussian integers. Prove that

αN(π)−1 ≡ 1 (mod π)

when π is a prime in Z[i]. [Ros14, 604p]

33. Define a1 = 0, a2 = 2, a3 = 3, an+3 = an + an+1 Prove that ∀ prime
number p we have p|ap (AOPS user CeuAzul)

34. Let f(x) = x8+4x6+2x4+28x2+1. Let p > 3 be a prime and suppose
there exists an integer z such that p divides f(z). Prove that there exist
integers z1, z2, . . ., z8 such that if

g(x) = (x− z1) (x− z2) · · · (x− z8)

then all coefficients of f(x)− g(x) are divisible by p. (IMO shortlist 1992)

35. Let n > 1 be an integer. In a circular arrangement of n lamps L0, . . . , Ln−1,
each of of which can either ON or OFF, we start with the situation where
all lamps are ON, and then carry out a sequence of steps, Step0, Step1, . . . .
If Lj−1 (j is taken mod n) is ON then Stepj changes the state of Lj (it
goes from ON to OFF or from OFF to ON) but does not change the state
of any of the other lamps. If Lj−1 is OFF then Stepj does not change
anything at all. Show that:
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(a) There is a positive integer M(n) such that after M(n) steps all lamps
are ON again.

(b) If n has the form 2k then all the lamps are ON after n2 − 1 steps.
(c) If n has the form 2k +1 then all lamps are ON after n2−n+1 steps.

(IMO shortlist 1993)

36. The sequence a0, a1, a2, . . . is defined as follows: a0 = 2, ak+1 =
2a2k − 1 for k ≥ 0. Prove that if an odd prime p divides an, then 2n+3

divides p2 − 1. (IMO shortlist 2003)

37. Let p be a positive prime integer and k be a positive integer. Suppose
that there are p2k + pk +1 towns. Each airline runs direct flights between
every pair of towns in a group of pk + 1. What is the minimum number
of airlines needed to ensure that at least one airline runs direct flights
between every pair of towns?
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