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For x1, . . . , xn, we define the symmetric sum sk to be the coefficient of tn−k

in the polynomial
∏n

i=1(t + xi) (see Viete’s sums). We define the symmetric
average dk to be sk/

(
n
k

)
.

Theorem 1. For non-negative x1, . . . , xn and 0 < k < n, d2k ≥ dk−1dk+1, with
equality exactly when all the xi are equal.
Proof. We will proceed by induction on n.

For n = 2, the inequality just reduces to AM-GM inequality. Now suppose
that for n = m− 1 some positive integer m ≥ 3 the inequality holds.

Let x1, x2, . . ., xm be non-negative numbers and dk be the symmetric av-
erages of them. Let d′k be the symmetric averages of x1, . . ., xk−1. Note that
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nd

′
k−1xm.
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